

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Photoluminescence and energy transfer studies on Eu²⁺ and Ce³⁺ co-doped SrCaSiO₄ for white light-emitting-diodes

Hong Yu^a, Yawen Lai^b, Guimei Gao^a, Li Kong^a, Guanghuan Li^a, Shucai Gan^{a,*}, Guangyan Hong^c

^a College of Chemistry, Jilin University, Changchun 130026, PR China

^b College of Geoexploration Science and Technology, Jilin University, Changchun 130026, PR China

^c State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

ARTICLE INFO

Article history: Received 31 December 2010 Received in revised form 17 March 2011 Accepted 18 March 2011 Available online 29 March 2011

Keywords: Silicate SrCaSiO₄:Eu²⁺ Ce³⁺ Phosphor Energy transfer Photoluminescence

1. Introduction

White-light-emitting diodes (W-LEDs), the next-generation solid state lighting, have attracted much attention due to their superior features such as higher rendering index (CRI), higher luminosity efficiency, and lower energy consumption [1,2]. W-LEDs have been widely used as backlights for electronic devices and are anticipated to replace traditional fluorescent lamps for general illumination as their efficiency and color rendering properties are significantly improved [3]. The most common w-LEDs have been commendably realized using YAG:Ce³⁺ as a broadband yel-low phosphor coated on the blue InGaN chip [4–6], however, such a combination offers high luminescence efficiency but a poor color rendering index (<80) [7]. In order to overcome these disadvantages mentioned above, new class of phosphors, especially those can be effectively excited by ultraviolet or blue light and can emit strong blue, green, yellow or red light, gained importance [8-10]. In order to meet the optimum requirements of w-LEDs, tricolor phosphors with high stability and intense absorption in UV or near UV spectral region are in great demand [11].

Co-doping of the activators with f–d electron configuration, such as $Ce^{3+}-Eu^{2+}$, is an efficient method to obtain phosphors excited by UV or near UV [12,13]. Eu^{2+} and Ce^{3+} exhibit similar optical prop-

ABSTRACT

The luminescence of SrCaSiO₄:Eu²⁺, Ce³⁺ is studied as a potential ultraviolet light-emitting diodes (UV-LEDs) phosphor that is capable of converting the ultraviolet emission of a UV-LED into green light with good luminosity. There are two emissions peaks peaking at 420 and 500 nm, respectively. The two emissions come from d–f transitions of Ce³⁺ and Eu²⁺, respectively. Effective energy transfer occurs in Ce³⁺/Eu²⁺ co-doped SrCaSiO₄ due to a part of spectral overlap between the emission of Ce³⁺ and excitation of Eu²⁺. Co-doping of Ce³⁺ enhances the emission intensity of Eu²⁺ greatly by transferring its excitation energy to Eu²⁺. The Ce³⁺/Eu²⁺ energy transfer, thoroughly investigated by the diffuse reflection emission and excitation spectra, photoluminescence decay curves, is demonstrated to be in the mechanism of electric dipole–dipole interaction.

© 2011 Elsevier B.V. All rights reserved.

erties originating from the $4f^n \rightarrow 4f^{n-1}5d^1$ electronic transition, hosts with Eu^{2+} as an activator also can be used for Ce^{3+} doped phosphors, with the addition of Ce^{3+} , the luminous intensity of Eu^{2+} emission enhanced. Silicates phosphors, such as: $Sr_2SiO_4:Ce^{3+}$, Eu^{2+} , $Li_2SrSiO_4:Ce^{3+}$, Eu^{2+} [14,15] which show that co-doping of Ce^{3+} could enhance the emission intensity of Eu^{2+} greatly by transferring its excitation energy to Eu^{2+} which due to a part of spectral overlap between the emission of Ce^{3+} and excitation of Eu^{2+} . As far as we know, the luminescence property and the energy transfer of $SrCaSiO_4:Eu^{2+}$, Ce^{3+} phosphors have not yet been investigated.

In the present work, we synthesized and studied the luminescence property and the energy transfer of $SrCaSiO_4:Eu^{2+}$, Ce^{3+} phosphors. The photoluminescence properties were studied by measuring the diffuse reflection, emission and excitation spectra, and photoluminescence decay curves. The energy transfer from Ce^{3+} to Eu^{2+} exists in $SrCaSiO_4$ lattice, the emission intensity of Eu^{2+} was enhanced by the energy transfer from Ce^{3+} to Eu^{2+} . $SrCaSiO_4:Eu^{2+}$, Ce^{3+} is a promising phosphor that can be effectively excited by UV and suitable for use in white LEDs.

2. Experimental

All the samples were prepared by a solid-state reaction technique. Analytical reagent grade (99.90%) SrCO₃, CaCO₃, H₂SiO₃, Li₂CO₃ were obtained from Beijing Chemical Reagent Research Institute of China and spectrographically pure (99.99%) Eu₂O₃, Ce₂(C₂O₄)₃ were supplied by Yuelong Rare Earth of China, were employed as reactants. Li₂CO₃ as the charge compensator, the charge compensation for the substitution of Sr²⁺ by Ce³⁺ is achieved by adding equimolar concentration of Li⁺, the incorporation of Li⁺ ions greatly enhance the luminescence intensity probably

^{*} Corresponding author. Tel.: +86 431 87652736. *E-mail address:* gansc@jlu.edu.cn (S. Gan).

^{0925-8388/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2011.03.116

Fig. 1. XRD patterns of SrCaSiO₄: xEu^{2+} samples with different Eu^{2+} concentration (x=0-0.08).

due to the influence of charge compensation of alkali metal ions, and thus stabilize the structure and enhance the luminescence [16]. Stoichiometric mixtures were blended and milled thoroughly in an agate mortar and then transferred into the corundum crucible, subsequently calcined at successively at 1350 °C for 2 h in a reducing atmosphere.

All samples were characterized by X-ray powder diffraction (XRD). The XRD measurements were performed on a Bruke/D8-Advance with Cu K α radiation ($\lambda = 1.518$ Å). The operation voltage and current were maintained at 40 kV and 40 mA, respectively. A scan rate of 2°/min was applied to record the patterns in the range of $2\theta = 10-80^\circ$. The excitation and emission spectra were measured by a Hitachi F-7000 fluorescence spectrofluorometer equipped with a 150 W Xe lamp. The luminescence decay curves were obtained from a Lecroy Wave Runner 6100 Digital Oscilloscope (1 GHz). The diffuse reflectance spectra were obtained by a Hitachi V-4100 spectrophotometer with the reflection of black felt reflection (3%) and white Al₂O₃ (reflection 10%) in the wavelength region of 200–600 nm. All the experiments were performed at room temperature.

3. Results and discussion

The XRD patterns of SrCaSiO₄: xEu^{2+} (x=0-0.08) with different content of Eu²⁺ as dopant are shown in Fig. 1. All of the diffraction peaks are accord with SrCaSiO₄ (JCPDS card No. 77–1619). All these samples are of single phase without any impurities. This indicates that doping of Eu²⁺ in the SrCaSiO₄ with such a small concentration does not influence the crystallizing behavior of the host. The crystal structure of SrCaSiO₄:Eu²⁺ has been refined to orthorhombic [17], space group *Pmnb* with a=0.564 nm, b=0.703 nm, c=0.964 nm, V=0.383 nm³. In this work, the radius of Eu²⁺ (0.117 nm) is similar to that of Sr²⁺ (0.118 nm), possibly, the Eu²⁺ ions preferably occupy the Sr²⁺ ions [18].

The XRD patterns of SrCaSiO₄, SrCaSiO₄:0.005 Eu²⁺, SrCaSiO₄:0.01 Ce³⁺ and SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺ samples are shown in Fig. 2. All of the diffraction peaks are accord with SrCaSiO₄ (JCPDS card No. 77–1619). This indicates that doping of Eu²⁺ and Ce³⁺ both can adulterate the SrCaSiO₄ with such a small concentration and do not influence the crystallizing behavior of the host. The radius of Ce³⁺ (0.101 nm) is similar to that of Ca²⁺ (0.100 nm), possibly, the Ce³⁺ ions preferably occupy the Ca²⁺ ions [18].

The photoluminescence (PL) excitation and emission spectra of Eu²⁺ doped SrCaSiO₄ phosphor samples with 0.5 mol% concentration are shown in Fig. 3. It can be seen clearly that the excitation spectrum covers the region from 250 to 400 nm with a maximum at 330 nm. The excitation band attributes to the transition of $4f^7 \rightarrow 4f^65d^1$ and the excitation from 250 to 400 nm matches well with UV LED emission. The emission spectrum excited by 330 nm covers the broad band from 400 to 650 nm

Fig. 2. XRD patterns of SrCaSiO₄, SrCaSiO₄:0.005 $Eu^{2+},$ SrCaSiO₄: 0.01 Ce^{3+} and SrCaSiO₄:0.005 $Eu^{2+},$ 0.01 $Ce^{3+}.$

with a maximum at 500 nm, which corresponds to the transition of $4f^65d^1 \rightarrow 4f^7.$

The doping concentration of luminescent centers is an important factor influencing the phosphor performance. Therefore, it is necessary to confirm the optimum doping concentration. The emission spectra of SrCaSiO₄: xEu^{2+} (x=0.001-0.08) phosphors with different Eu²⁺ concentration under 330 nm excitation are shown in Fig. 4. It can be seen that no distinct diversifications about the shapes and positions of the emission spectra when the concentration of Eu²⁺ varies in a wide range. The intensity of all of the emission are enhanced significantly with the Eu²⁺ concentration increasing, and gradually decreases as the doping concentration becomes higher than x = 0.005. This may occurs because of exchange interaction, radiation reabsorption, or multipole-multipole interaction [19]. In the present case, radiation reabsorption dues to spectral overlap alone cannot be fully responsible for nonradiative energy transfer between the Eu²⁺ ions. Hence, the process of energy transfer should be electric multipole-multipole interaction. The probability of energy transfer between the Eu²⁺ ions dues to multipole-multipole interaction is distance-dependent [20,21]. The distance between the Eu²⁺ ions becomes smaller with the addition of Eu²⁺ ions which leading to the high probability of energy transfer among the Eu²⁺ ions, thereby increases the loss of energy [22,23], so the emission peak inten-

Fig. 3. Photoluminescence excitation and emission spectra of SrCaSiO₄:0.005 Eu²⁺.

Fig. 4. Photoluminescence emission spectrum of SrCaSiO₄: xEu^{2+} with different Eu^{2+} concentration under 330 nm excitation (x = 0.001-0.08).

sity get lower. The Eu²⁺ ions concentration is the main factor to influence the emission peak intensity.

The concentration quenching is due to energy transfer from one activator (donor) to another until the energy sink (acceptor) in the lattice is reached. Hence, the energy transfer will strongly depend on the distance (R) between the Eu²⁺ ions, which can be obtained using the following equation [24]

$$R_c \approx 2 \left[\frac{3V}{4\pi X_c Z} \right]^{1/3} \tag{1}$$

where X_c is the critical concentration, Z is the number of trivalence of rare earth ions in the SrCaSiO₄ unit cell [N=4 in SrCaSiO₄], and V is the volume of the unit cell (V=0.426 nm³ in this case). The critical concentration is estimated to be about x = 0.005, where the measured emission intensity and decay time begin to decrease. The critical distance (R_c) between the donor and acceptor can be calculated from the critical concentration, for which the nonradiative transfer rate equals the internal decay rate (radiative rate). Blasse assumed that, for the critical concentration, the average shortest distance between the nearest activator ions is equal to the critical distance. By taking the experimental and analytic values of V, Nand X_c (0.383 nm³, 4, 0.005, respectively), the critical distance R_c is estimated by Eq. (1) to be about 3.3 nm.

The PL excitation and emission spectra of SrCaSiO₄:0.01 Ce³⁺ phosphor sample and SrCaSiO₄:0.005 Eu²⁺ phosphor sample are shown in Fig. 5, the concentration of Ce³⁺ and Eu²⁺ are the optimum concentration. It can be seen clearly that the intensity of the excitation and emission of Ce³⁺ is about triple of Eu²⁺. The excitation spectrum of SrCaSiO₄:0.01 Ce³⁺ is monitored at 420 nm (emission of Ce³⁺) with the peaks at 256, 290 and 365 nm, which are due to the transition of 4f¹ \rightarrow 4f⁰5d¹ of Ce³⁺. The emission spectrum of SrCaSiO₄:0.01 Ce³⁺ excited by 365 nm is a board band with a maximum at 420 nm. Compare the spectra of SrCaSiO₄:0.005 Eu²⁺ and SrCaSiO₄:0.01 Ce³⁺, it can be seen that there has a part of superposition between the excitation spectrum of SrCaSiO₄:0.005 Eu²⁺ and the emission spectrum of SrCaSiO₄:0.01 Ce³⁺, may occur effectively energy transfer.

The diffuse reflectance spectra of the SrCaSiO₄:0.005 Eu²⁺, SrCaSiO₄:0.01 Ce³⁺ and SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺ samples are shown in Fig. 6. All the diffuse reflectance of the tests are 100% (take Al₂O₃ as the standard). As the result of the intense reflection of SrCaSiO₄:0.01 Ce³⁺, the diffuse reflectance reaches to 180. Ce³⁺ ions have three absorption bands are present at 233, 262 and 390 nm, respectively, all the bands are attribute to the electronic transi-

Fig. 5. Photoluminescence excitation and emission spectra of $SrCaSiO_4:0.005 Eu^{2+}$ (a) and $SrCaSiO_4:0.01 Ce^{3+}$ (b).

tion of $4f^1 \rightarrow 4f^05d^1$ of Ce^{3+} . Eu^{2+} ions have two intense absorption bands present at 249 and 350 nm, respectively, the absorption bands are attribute to the electronic transition of $4f^7 \rightarrow 4f^65d^1$ of Eu^{2+} . From Fig. 6 and to compare the curves a and c, it can be seen that co-doped Ce^{3+} in SrCaSiO₄:0.005 Eu^{2+} phosphor can make the absorption bands increased, it is also a proof that co-doped Ce^{3+} could enhance the luminous intensity of the SrCaSiO₄:0.005 Eu^{2+} phosphors.

The PL excitation spectra of SrCaSiO₄:0.005 Eu²⁺ (a: $\lambda_{em} = 500 \text{ nm}$) and SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺ (b: $\lambda_{em} = 420 \text{ nm}$, c: $\lambda_{em} = 500 \text{ nm}$) samples are shown in Fig. 7. It shows that the luminous intensity of the excitation spectrum of SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺ (Fig. 7c) is obviously stronger than that of SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺ (Fig. 7c) is obviously stronger than that of SrCaSiO₄:0.005 Eu²⁺ (Fig. 7a) under the same monitoring wavelength. It is a proof that co-doped Ce³⁺ could enhance the luminous intensity of the SrCaSiO₄:0.005 Eu²⁺ phosphors. In SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺ excitation spectrum (Fig. 7c), we observed that the excitation peak of Ce³⁺ ($\lambda_{ex} = 365 \text{ nm}$), it indicates that it exists the energy transfer from Ce³⁺ to Eu²⁺. In SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺ (Fig. 7b), we only observed the excitation spectrum of Ce³⁺, while Ce³⁺ co-doped SrCaSiO₄:0.005 Eu²⁺ can make the excitation spectrum broader, it indicates that it is feasible to use the excitation wavelength of both Ce³⁺ and Eu²⁺. In order to optimizing the

Fig. 6. The diffuse reflectance spectra of $SrCaSiO_4:0.005 Eu^{2+}$ (a), $SrCaSiO_4:0.01 Ce^{3+}$ (b), $SrCaSiO_4:0.005 Eu^{2+}$, 0.01 Ce^{3+} (c).

Fig. 7. The photoluminescence excitation spectrum of SrCaSiO₄:0.005 Eu²⁺ (a: $\lambda_{em} = 500 \text{ nm}$) and SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺(b: $\lambda_{em} = 420 \text{ nm}$, c: $\lambda_{em} = 500 \text{ nm}$).

emission spectra, we fixed the Eu²⁺ concentration to alter the Ce³⁺ concentration.

The PL emission spectra ($\lambda_{ex} = 365 \text{ nm}$) of SrCaSiO₄:0.005 Eu²⁺, xCe^{3^+} and SrCaSiO₄:0.01 Ce³⁺ phosphor samples are shown in Fig. 8. The emission spectrum of SrCaSiO₄:0.005 Eu²⁺ (Fig. 8a) is a broad band with a maximum at 500 nm. The emission spectra of SrCaSiO₄:0.005 Eu²⁺, xCe^{3^+} (Fig. 8b–d) with two emission peaks at 420 and 500 nm, respectively. To compare the curves a–d, it shows that a few of Ce³⁺ co-doped in SrCaSiO₄:0.005 Eu²⁺ phosphors could not only increase the luminous intensity of Eu²⁺ but also make the luminous color transfer from yellow-green to blue-green, when the optimum concentration of Ce³⁺ at 0.01 mol, the luminous intensity of SrCaSiO₄:0.005 Eu²⁺, xCe^{3+} phosphors is maximum, and then gradually decreases as the Ce³⁺ concentration increasing (x > 0.01). It is a proof that co-doped Ce³⁺ could enhance the luminous intensity of the SrCaSiO₄:0.005 Eu²⁺ phosphors.

The fluorescence decay curves of $SrCaSiO_4:0.005 Eu^{2+}$ and $SrCaSiO_4:0.005 Eu^{2+}$, 0.01 Ce³⁺ samples are shown in Fig. 9. The typical decay curve of phosphors can be fitted using the single exponential method below, and the equation can be described by Blasse and Grabmarier [25], it is well-known that the decay behavior can be expressed as follows

$$I = I_0 \exp\left(\frac{-t}{\tau}\right) \tag{2}$$

Fig. 8. Photoluminescence emission spectra of $SrCaSiO_4:0.005 Eu^{2+}$ (a), $SrCaSiO_4:0.005 Eu^{2+}$, 0.005 Ce^{3+} (b), $SrCaSiO_4:0.005 Eu^{2+}$, 0.01 Ce^{3+} (c), $SrCaSiO_4:0.005 Eu^{2+}$, 0.015 Ce^{3+} (d) and $SrCaSiO_4:0.01 Ce^{3+}$ (e).

Fig. 9. The fluorescence decay curves of 500 nm emission of Eu^{2+} . SrCaSiO₄:0.005 Eu^{2+} (a) and SrCaSiO₄:0.005 Eu^{2+} , 0.01 Ce^{3+} (b).

where I_0 and I are the luminescence intensities at time 0 and t, respectively, and τ is the fluorescence lifetime. Based on the exponential Eq. (2) and fluorescence decay curves (Fig. 9), the fitting results of the fluorescence lifetime of Eu²⁺ in SrCaSiO₄:0.005 Eu²⁺ and SrCaSiO₄:0.005 Eu²⁺, 0.01 Ce³⁺ samples are 198 and 611 ns, respectively. According to Fig. 9, it can be seen clearly that after doping Ce³⁺ content, the lifetime of Eu²⁺ in SrCaSiO₄ phosphors is increased accordingly. This is a convincing proof that from Ce³⁺ to Eu²⁺ occurs effectively energy transfer.

4. Conclusions

In summary, the photoluminescence properties and the Ce^{3+}/Eu^{2+} energy transfer of the SrCaSiO4: Eu^{2+} , Ce^{3+} phosphors were investigated. The SrCaSiO4: Eu^{2+} , Ce^{3+} phosphors show a green emission band with a maximum at 500 nm. Energy transfer from Ce^{3+} to Eu^{2+} is due to the superposition between the emission spectrum of Ce^{3+} and the excitation spectrum of Eu^{2+} , which was confirmed by the evidences collected from the diffuse reflection, emission and excitation spectra, and photoluminescence decay curve. With Ce^{3+} co-doping, the excitation of Eu^{2+} in UV range is greatly enhanced and its corresponding emission intensity is increased by the reabsorption of the excitation energy from Ce^{3+} . The fluorescence lifetime of Eu^{2+} is also greatly enhanced (from 198 to 611 ns), it provides the indirect evidence of the Ce^{3+}/Eu^{2+} energy transfer. Therefore, the SrCaSiO₄: Eu^{2+} , Ce^{3+} phosphor can act as a potential green light emitting phosphor for UV-LEDs.

Acknowledgements

This present work was financially supported by the National Science and Technology Major Projects, No: 2008ZX05018 and the key technology and equipment of efficient utilization of oil shale resources, No: OSR-05.

References

- [1] J. Baur, P. Schlotter, J. Schneider, Adv. Solid State Phys. 37 (1998) 67.
- [2] X.M. Zhang, X.B. Qiao, Seo Hyo Jin, J. Electrochem. Soc. 157 (2010) 267.
- [3] F.Q. Ren, D.H. Chen, J. Alloys Compd. 499 (2010) 53.
- [4] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64 (1994) 1687.
- [5] Q. Li, L. Gao, D. Yan, Mater. Chem. Phys. 64 (2000) 41.
- [6] H.J. Byun, W.S. Song, Y.S. Kim, J. Phys. D: Appl. Phys. 157 (2010) 149.
- [7] S.X. Yan, J.H. Zhang, X. Zhang, J. Phys. Chem. C 111 (2007) 13256.
- [8] Z.P. Zhang, S.Y. Ma, H.Y. Yu, J. Alloys Compd. 509 (2011) 76.
- [9] H.J. Yu, W. Chung, S.H. Park, J. Kim, S.H. Kim, Mater. Lett. 65 (2011) 474.
- [10] K. Shioi, Y. Michiue, N. Hirosaki, J. Alloys Compd. 509 (2011) 332.

- [11] Z.L. Wang, K.W. Cheah, H.L. Tam, M.L. Gong, J. Alloys Compd. 482 (2009) 437.

- [12] B.Y. Geng, J.Z. Ma, J. Alloys Compd. 473 (2009) 530.
 [13] Y.Q. Li, H.T. Hintzen, J. Alloys Compd. 385 (2004) 1.
 [14] N. Lakshminarasimhan, U.V. Varadaraju, J. Electrochem. Soc. 152 (2005) 152.
- [15] H. Hong, R.L. Fu, Y.G. Cao, X.F. Song, Opt. Mater. 32 (2010) 632.
- [16] J.C. Park, H.K. Moon, D.K. Kim, S.H. Byeon, B.C. Kim, K.S Suh, Appl. Phys. Lett. 77 (2000) 2162.
- [17] Catti Michele, Gazzoni Guseooe, Ivaldi Gabriella, Acta Cryst. 40 (1984) 537.
- [18] R.D. Shannon, Acta Cryst A32 (1976) 751.
- [19] L.G. Van Uitert, J. Electrochem. Soc. 114 (1967) 1048.
- [20] Chang-Won Lee, O. Henry, J. Appl. Phys. 95 (2004) 7717.
- [21] Qijin Zhang, Chin J. Polym. Sci. 15 (1997) 187.
 [22] Yue Tian, Xiaohui Qi, Xiaowei Wu, J. Phys. Chem. C. 113 (2009) 10767.
- [23] John L. Kropp, Maurice W. Windsor, J. Phys. Chem. 71 (1967) 477.
- [24] G. Blasse, Philips Res. Rep. 24 (1969) 131.
- [25] G. Blasse, B.C. Grabmarier, Luminescent Materials, Springer-Verlag, Berlin, 1994, p. 96.